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On the movement of ships in restricted waterways 

By T. CONSTANTINE 
Department of Civil Engineering, Manohester University 

(Received 4 May 1960) 

In  this paper some simple theoretical considerations concerning the movement 
of ships in restricted waterways are discussed, and it is shown that for a ship towed 
from the bank, or by any external force, there are three distinct speed ranges: 
subcritical, critical and supercritical. In  the subcritical and supercritical ranges, 
Bernoulli’s equation and the continuity equation are satisfied everywhere by a 
state of steady motion relative to the ship, but in the critical range these laws 
require that a quantity of fluid is piled up continuously ahead of the ship in the 
form of a bore. Experimental confirmation is given by means of photographs of 
model tests. 

1. Introduction 
When a ship passes along a canal or other restricted waterway, it has been 

observed that the distance between the keel of the ship and the canal bottom 
decreases as the speed increases, and in fact on occasions the ship has been known 
to strike the bottom. This phenomenon is known as ‘squatting’. In  response to 
a request from the Manchester Ship Canal Company, the author undertook an 
investigation into the problem of squatting. In  addition to a theoretical con- 
sideration of the problem many model tests were carried out in the Whitworth 
Laboratories at Manchester University. 

One of the main outcomes of the investigation was the elucidation of a distinc- 
tive yet little-known general property concerning the movement of floating 
bodies along canals. This is that there are three types of flow regime according to 
different speed ranges. The principal aim of the present paper is to explain this 
property and to show, for each of the three cases, the relationships between the 
salient parameters of the problem, such as the dimensionless ship speed (i.e. 
a Froude number) and a dimensionless parameter measuring the degree of 
squatting. The theoretical model considered is severely simplified, but photo- 
graphs of an experimental demonstration are presented which confirm the 
essential distinctions between the three possible regimes. 

2. Theoretical treatment 

made : 

rectangular cross-section breadth b and undisturbed depth y,. 

To reduce the problem to its simplest form, the following assumptions are 

(1) The ship moves with a constant velocity V, along a canal of uniform 

(2) The canal extends rectilinearly to infinity in both directions. 



248 17. Constantine 

(3) The cross-section of the ship is uniform over its whole length and the end 

(4) The velocities of the water particles in any cross-section are constant over 

( 5 )  The loss of head due to friction is neglected. 
(6) The effects of the secondary wave system are ignored. 
(7) Any force necessary to move the ship is provided externally-not by 

means of a propeller which causes a reaction on the water. 
Let us choose a frame of reference moving with the ship, so that the problem is 

reduced to one of steady flow. The sides and bottom of the canal must of course be 
considered to be moving past the ship with a velocity K; but since we are in effect 
dealing with an ideal fluid, this motion of the wetted boundary will not influence 
the flow. 

effects are ignored. 

that cross-section. 
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FIGURE 1. Idealized motion of the ship in the subcritical range. 

With reference to figure 1, we have as the equation continuity 

&by1 = V,(bY3-A), (1) 
where A is the underwater cross-sectional area of the ship, y3 the depth of the 
water alongside the ship, and V, the velocity of the water alongside the ship. 
Bernoulli's equation takes the form 

Combining equations (1) and (2), we get 

Introducing the dimensionless parameters 
A 

S = blockage factor = - , 
by1 

it can be shown that (3) reduces to 

- [ 2 d ( l - d - S ) ' ] *  
l -  1-(1-d-S)2 * 

(4) 

If the relationship between Fl and d for various values of the blockage factor 8 is 
plotted, a remarkable property comes to light (see figure 2). It would appear that 
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for a given blockage factor there is a certain speed beyond which it is impossible 
for the ship to go. At this ‘maximum’ speed the ship will have squatted by a 
certain amount shown by the value of d corresponding to the maximum value 
of Fl. If the value of x/yl (where xis the clearance between the bottom of the ship 
and the bottom of the canal when stationary) is less than this limiting value of d,  
then the ship will strike the canal bottom at a speed corresponding to d = x/y l .  

FIamE 2. The relationship between the Froude number PI (baaed on the speed of the 
ship and the undisturbed depth of the canal) and the dimensionless ‘squat’ d of the ship 
for various values of the blockage factor S. 

This speed of course will be less than the maximum for that one blockage factor. 
If, however, the value of z/yl is greater than the limiting value of d,  it is necessary 
to ask what happens t o  the ship if it  attempts to exceed the ‘maximum’ speed? 

3. Conditions at higher speeds 
At first sight a possible solution to this problem is that the ship would catastro- 

phically sink if the velocity was increased by a fraction; but a more likely solution 
follows from an idea given in a publication by Lap (1950) in which he considers 
the work of Krietner (1934). 
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From equation (3) we can derive 

If now V3/(gy1)' is plotted against V,/(ggl)* for a range of values of X, figure 3 is 
obtained. Here it can be seen that, aa V, increases, so does V3 up to a certain 
maximum value beyond which once again there is apparently no real solution. 

In  other words, up to this maximum value of V' the quantity of water flowing past 
the sides of the ship is capable of adjusting itself to take all the water presented 
by the corresponding value of V,. Beyond the maximum, however, V3 is no longer 
capable of keeping pace with V,, and the excess water must be piled up in front 
of the ship. 

Before this problem can be considered further, it is necessary to investigate 
what happens fore and aft of the ship as the water is piled up. 
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4. Idealized ‘piston’ motion in a canal 
Consider a canal of uniform rectangular cross-section (see figure 4) extending 

rectilinearly to infinity in both directions. The canal is filled with a perfect liquid 
t o  a depth of y,. Across the cross-section, and completely blocking it, is a flat plate 
capable of being moved along the length of the canal at a constant speed. If in 

FIGURE 4. Idealized piston motion in a canal. 

fact the plate is moved with a constant velocity w, the resulting motion ahead of 
the plate will be as shown and the speed of the bore front will be given by 

(cf. Stoker 1957, p. 328). 
To investigate the motion at the rear of the plate it is convenient to consider 

first the motion of a simple wave in shallow water (Stoker 1967, Ch. 10). If u the 
horizontal velocity component and c the propagation speed are both functions of 
x ,  the horizontal distance travelled, and of time t ,  it can be shown that in the 
(2, t)-plane we have two sets of characteristics C, and C, which are the solution 
curves of the ordinary differential equations 

ax 
at 
dx 
at 

c,: - = u+c, 

c,: - = u-c. 

Also u + 2c = k, a constant along C,, 
u - 2c = k2 a constant along C,. 
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This can now be used to determine the form of a disturbance behind a plate 
which is completely blocking the canal, and which is moving at a constant velocity 
w in still fluid of constant depth yl. The acceleration of the plate to the velocity w 
may be either gradual or instantaneous but provided the position of the plate is 
known for all t, solutions are possible. 

I I 
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FIGURE 6 

FIUURE 5. The (z, t)-relationship describing the disturbance to the rear of a plate which 
completely blocks the canal cross-section and accelerates gradually from rest to a constant 
velocity w. 

FIGURE 0. The (2, t)-relationship describing the disturbance to the rear of a plate which 
completely blocks the canal cross-section and accelerates instantaneously to a constant 
velooity w. 

The situation when the acceleration of the plate is not instantaneous is given in 
figure 5 .  Zone 1 represents the quiet area where the disturbance has not reached, 
and zone 2 represents a region of variable depth joining zone 1 to zone 3 which is 
another zone of constant depth. The two equations which define the straight 
characteristics in zone 2 are determined as follows: 

uo - 2c0 = u, - 2c, = - 2c0, c, = &La + co, 

ax 
at - = U,+C,  = #u,+co. 

Since c, = [g(yl + 7 j a ) ] * ,  the surface elevation 7 j a  can be determined anywhere in 

Similarly the equation for zone 2 when the acceleration of the plate is assumed 
zone 2 at any time t .  

to be infinite (figure 6) is derived as follows: 

ax 5 2 2  - = - = $ u + c o , ’  u = -  - c at t 3 ( t -  0 )  

c = @ + C O  = &*x+2co). 
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Again knowing c = [g(v + yl)]f, the surface elevation 7 can be determined any- 
where in zone 2 at any time t .  

Thus for the given condition we can accurately describe the motion fore and 
aft of the plate when it moves with a uniform velocity w. 

5. The critical and supercritical ranges 
Whilst on the face of it there seems to be little connexion between a plate which 

completely blocks the canal and a ship which is floating and in addition only 
blocking a fraction of the canal cross-section, the information just derived can in 
fact be used. The water piled up in front of the ship will cause, as in the case of the 
plate, a surge or bore to  travel ahead and consequently a negative disturbance aft 
of the ship, This is illustrated in figure 7. It should be noted that we are still 
assuming that there are no end effects and the ship therefore retains an even keel. 

C 
Vl 

c__ 

FIGURE 7. Idealized motion of the ship in the critical range. 

FIGURE 8. Idealized motion of the ship in the critical range, the frame of reference 
moving with the ship. 

It is easily seen that the expression for c has the same form as before. Con- 
sidering now the motion to the aft of the ship, we have, for the total quantity 
passing the ship, 

But we know that 
- WZ) Yz = b(v, - w4) Y4. 

c = (9Y4)f = (9Y5)f-hh = (9Yl)+--&4, 

w4 = 2[(9Yl)+ - (9Y4)fL 

(v, - WZ) Yz = [v, - 2{(9Yl)f - (9Y4)91 Ya. 

Thus, given yz, we have sufficient information to determine y4 and w4. If, there- 
fore, a relationship between yz and V, can be determined, we have a complete 
picture of the behaviour of the ship under the ideal conditions assumed. 

When the ship does start to push forward a quantity of water, the depth and 
velocity immediately in front of the ship will alter and V, (see figure 8) will adjust 
itself to pass the maximum under the new conditions. With sufficient computa- 
tional labour it is possible to work out the values of V,/(gyl)f and d for values of 
V,/(gyl)& in excess of the critical, i.e. when the steady state ceases to exist. These 
results are shown as chain lines in the graphical representation in figures 2 and 3. 
As V,/(gyl)i increases, V,/(gyl)f continues to increase but at a much slower rate 
than before. A t  the same time d decreases in value, i.e. the ship begins to rise. 
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But what happens as V,/(gyl)* becomes equal to and exceeds unity? If equa- 
tions (1) and (2) are re-examined it will be seen that in addition to the solution 
already plotted for the subcriticel range there are solutions for PI > 1. These 
additional solutions are shown for a range of blockage factors in figures (9) and ( 10). 

FIGURE 9. The relationship between the Froude numbers based on the speed of the ship 
and the relative velocity alongside the ship for various values of the blockage factor 8. 
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FIGURE 10. The relationship between the Froude number PI (based on the speed of the 
ship and the undisturbed depth of the canal) and the dimensionless ‘squat ’ of the ship for 
various values of the blockage factor S. 
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It is clear from a study of these graphs that for a, ship moving in a restricted 
passage of fluid (or indeed for any floating body which is moving in a restricted 
passage of fluid, or which is stationary in a moving body of fluid), there are three 
distinct speed ranges: subcritical, critical and supercritical. In  the subcritical 
range the Bernoulli and continuity equations are satisfied by a steady state 
everywhere, the excess velocity alongside the ship causing a decrease in the depth 
of fluid and consequently the squatting of the ship. In  the supercritical range the 
‘ steady-state ’ Bernoulli and continuity equations are again satisfied everywhere, 
but, contrary to the subcritical range, there is a reduced velocity alongside the 

S-040 I At rest I 
I - I  

I Subcritical 
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FIGURE 11. The idealized behaviour of a ship aa it moves at speeds in the subcritical, 
critical and supercritical range. For eaae of comparison the diagrams give the position of 
the ship and bore at one fixed time after starting instantaneously from rest. 

c- Supercritical 

ship and hence an increase in the depth of fluid causing the ship to rise above its 
original static position. Connecting the subcritical and the supercritical is the 
critical range where the Bernoulli and continuity equations can only be satisfied 
in the vicinity of the ship if a quantity of fluid is piled up ahead of it. This causes 
a bore to advance ahead and a negative disturbance to move aft and away from 
the ship. Contrary to the other two ranges in which the motion is steady, the 
motion in this case is unsteady. 

It can be shown that as Fl increases above the lower critical speed the height 
of the bore increases. At the same time the absolute speed of the bore front 
increases but its speed relative to the ship decreases, i.e. the ship tries to catch up 
the bore front. At the upper critical speed the bore height is a maximum and the 
ship is travelling at a speed only slightly less than that of the bore front, a small 
quantity of fluid still being pushed ahead. Immediately the upper critical speed 
is exceeded however the ship ‘jumps ’ on the bore and the bore as such disappears, 
the ship no longer pushing ahead any fluid. Figure 11 shows quite clearly the 
effect as Fl increases through the subcritical and supercritical range for the ideal 
case considered. 
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Clearly the shape of the ship and the viscous effects of the fluid will affect the 
results just derived. These effects along with the case of self-propulsion are to be 
dealt with in a separate paper. 

This phenomenon was conclusively demonstrated in the laboratory by towing 
a small ship (8in. long) along a small Perspex channel filled with water. The 
photographs given in figures 12 (a),  ( b )  and (c) (plate 1) show the ship in the sub- 
critical, critical and supercritical ranges, respectively. It will be noticed that in 
contrast to the ideal case considered the ship takes on a considerable trim in the 
critical range. 

The author would like to thank Professor J. A. L. Matheson for his guidance 
and encouragement throughout the whole project and Professor M. J. Lighthill 
for his valuable help on the theoretical treatment. 
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